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Abstract
In a previous work, Multi-Environment Model based LInear Nor-
malization, MEMLIN, was presented and it was proved to be ef-
fective to compensate environment mismatch. MEMLIN is an
empirical feature vector normalization which models clean and
noisy spaces by Gaussian Mixture Models (GMMs). In this al-
gorithm, the probability of the clean model Gaussian, given the
noisy model one and the noisy feature vector (cross-probability
model) is a critical point. In the previous work the cross-model
probability was approximated as time-independent. In this pa-
per, a time-dependent estimation of the cross-probability model
based on GMM is proposed. Some experiments with SpeechDat
Car database were carried out in order to study the performance of
the proposed estimation in a real acoustic environment. MEMLIN
with time-independent cross-probability model reached 70.21% of
mean improvement in Word Error Rate (WER), however, when
time-dependent cross-probability model based on GMM was ap-
plied, the mean improvement in WER went up to 78.47%.
Index Terms: robust speech recognition, feature normalization.

1. Introduction
When training and testing acoustic conditions differ, the accu-
racy of speech recognition systems rapidly degrades. To com-
pensate for this mismatch, robustness techniques have been de-
veloped along the following two main lines of research: acoustic
model adaptation methods, and feature vector normalization meth-
ods. In general, acoustic model adaptation methods produce the
best results [1] because they can model the uncertainty caused by
the noise statistics. However, these methods require more data
and computing time than do feature vector normalization meth-
ods, which do not produce as good results but provide more on
line solutions. Hybrid techniques also exist [2].

There are several feature vector normalization families [3], but
independently of the family, some algorithms assume a prior prob-
ability density function (pdf) for the estimation variable. In those
cases, a Bayesian estimator can be used to estimate the clean fea-
ture vector. The most commonly used criterion is to minimize
the Mean Square Error (MSE), and the optimal estimator for this
criterion, Minimum Mean Square Error (MMSE), is the mean
of the posterior pdf. Methods, such as Stereo-based Piecewise
Linear Compensation for Environments (SPLICE) [4], or Multi-
Environment Model-based LInear Normalization (MEMLIN) [5]
use the MMSE estimator to compute the estimated clean feature
vector.
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A previous work [5] shows that MEMLIN is effective to com-
pensate the effects of dynamic and adverse car conditions. MEM-
LIN is an empirical feature vector normalization based on stereo
data and the MMSE estimator, with joint modelling of clean and
noisy spaces by Gaussian Mixture Models (GMMs). Therefore, a
bias vector transformation is associated with each pair of Gaus-
sians from the clean and the noisy spaces. A critical point in
MEMLIN is the estimation of the probability of the clean model
Gaussian, given the noisy model one and the noisy feature vector
(cross-probability model). In [5], a time-independent solution is
considered. This work focuses on this term and it is proposed a
time-dependent solution, modelling the noisy feature vectors as-
sociated to each pair of Gaussians from the clean and the noisy
spaces with a GMM.

This paper is organized as follows: In Section 2, an overview
of MEMLIN is detailed. In Section 3, some experiments are pre-
sented to show the importance of the cross-probability model es-
timation. The new proposed cross-probability model based on
GMM is explained in Section 4. The results with Spanish Speech-
Dat Car database [6] are included in Section 5. Finally, the con-
clusions are presented in Section 6.

2. MEMLIN overview
2.1. MEMLIN approximations

• Clean feature vectors,xt, are modelled using a GMM ofC com-
ponents

p(xt) =
C∑

sx=1

p(xt|sx)p(sx), (1)

p(xt|sx) = N(xt;μsx ,Σsx), (2)

whereμsx , Σsx , andp(sx) are the mean vector, the diagonal co-
variance matrix, and the a priori probability associated with the
clean model Gaussiansx.
• Noisy space is split into several basic environments,e, and

the noisy feature vectors,yt, are modeled as a GMM ofC′ com-
ponents for each basic environment

pe(yt) =
C′∑

sey=1

p(yt|s
e
y)p(s

e
y), (3)

p(yt|s
e
y) = N(yt;μsey ,Σsey ), (4)

wheresey denotes the corresponding Gaussian of the noisy model
for the e basic environment;μsey , Σsey , andp(sey) are the mean
vector, the diagonal covariance matrix, and the a priori probability
associated withsey.



• Clean feature vectors can be approximated as a linear func-
tion of the noisy feature vector, which depends on the basic
environment and the clean and noisy model Gaussians:x ≈
Ψ(yt, sx, s

e
y) = yt − rsx,sey , wherersx,sey is a bias vector trans-

formation between noisy and clean feature vectors for each pair of
Gaussians,sx andsey.

2.2. MEMLIN enhancement

With those approximations, MEMLIN transforms the MMSE esti-
mation expression,̂xt = E[x|yt], into

x̂t = yt −
∑

e

∑

sey

∑

sx

rsx,seyp(e|yt)p(s
e
y|yt, e)p(sx|yt, e, s

e
y),

(5)
wherep(e|yt) is the a posteriori probability of the basic environ-
ment;p(sey|yt, e) is the a posteriori probability of the noisy model
Gaussian,sey, given the feature vector,yt, and the basic environ-
ment,e. To estimate those terms,p(e|yt) andp(sey|yt, e), equa-
tions (3) and (4) are applied as described in [5]. Finally, the cross-
probability model,p(sx|yt, e, sey), is the probability of the clean
model Gaussian,sx, given the feature vector,yt, the basic environ-
ment,e, and the noisy model Gaussian,sey. The cross-probability
model, along with the bias vector transformation,rsx,sey , is esti-
mated in a training phase using stereo data, and avoiding the time
dependence given by the noisy feature vector. So,p(sx|yt, e, sey)
can be estimated by relative frequency (time-independent cross-
probability model) [5]

p(sx|yt, e, s
e
y) ' p(sx|s

e
y, e) =

CN (sx|sey)
Nsey

, (6)

whereCN (sx|sey) is the count number of times that the most prob-
able pair of Gaussians issx andsey for all pairs of stereo training
data of thee basic environment, andNsey is the count number of
times that the most probable Gaussian for noisy training feature
vectors issey for thee basic environment.

3. Cross-probability model performance
To study the performance of the cross-probability model in a qual-
itative way, the histograms and scattegrams between the first Mel
Frequency Cepstral Coefficients (MFCCs) in non-silence frames
for different signals are depicted in Fig. 1.

Figure 1.a, which represents clean and noisy in real car con-
ditions feature vectors, shows the effects of car noise. The pdf of
clean first MFCCs is clearly affected (Fig.1.a.1), and the uncer-
tainty is increased (Fig.1.a.2).

Figure 1.b represents clean and normalized with MEMLIN
feature vectors. MEMLIN is applied with 128 Gaussians. The
pdf of normalized first MFCCs has been approximated to the clean
signal one (Fig. 1.b.1), and the uncertainty has been reduced (Fig.
1.b.2). The peak that appears in Fig. 1.b.1 is due to the transfor-
mation of noisy feature vectors towards the clean silence.

Finally, Fig. 1.c represents clean and normalized with MEM-
LIN feature vectors where the cross-probability model is computed
with the corresponding clean feature vector as (7). MEMLIN is ap-
plied with 128 Gaussians. In this case the pdf of the normalized
signal is almost the same that the clean one (Fig. 1.c.1) and the
uncertainty is drastically reduced (Fig. 1.c.2). These results verify
the importance of the estimation of the cross-probability model in
MEMLIN algorithm.

p(sx|yt, e, s
e
y) '

p(sx)p(xt|sx)∑
sx
p(sx)p(xt|sx)

. (7)
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Figure 1: Scattegrams and histograms between the first MFCC in non-
silence frames for different signals. The line in the scattergrams represents
the functionx = y.

4. Cross-probability model based on GMM
To improve the time-independent cross-probability model (6), we
propose to model the noisy feature vectors associated to a pair of
Gaussians (sx andsy) with a GMM ofC′′ components

p(yt|sx, sy) =
C′′∑

s′y=1

p(yt|sx, sy, s
′
y)p(s

′
y|sx, sy), (8)

p(yt|sx, sy, s
′
y) = N(yt;μsx,sy,s′y ,Σsx,sy,s′y ), (9)

whereμsx,sy ,s′y , Σsx,sy,s′y , andp(s′y|sx, sy) are the mean, the
diagonal covariance matrix, and the a priori probability associated
with s′y Gaussian of the cross-probability GMM associated with
sx andsy. To train these three parameters, the EM algorithm [7] is
applied. The basic environments are not indexed for clarity: they
are considered independently.

Let a set of clean and noisy stereo data available to learn
the corresponding cross-probability GMM parameters(X,Y) =
{(x1,y1), ...(xn,yn)..., (xN ,yN )}. Eachyn can be seen as an
incomplete component-labelled frame, which is completed by two
indicator vectors. The first one iswn ∈ {0, 1}C

′
, with 1 in the

position corresponding to thesy Gaussian generatingyn and ze-
ros elsewhere (W = {w1, ...,wN}). The second indicator vector
is zn ∈ {0, 1}C

′′
, with 1 in the position corresponding to the

s′y Gaussian of the cross-probability GMM generatingyn and ze-
ros elsewhere (Z = {z1, ..., zN}). Eachxn can be seen also as



Table 1: WER baseline results, in%, from the different basic environments (E1,...,E7).
Train Test E1 E2 E3 E4 E5 E6 E7 MWER (%)

CLK CLK 1.90 2.64 1.81 1.75 1.62 0.64 0.35 1.75

CLK HF 5.91 14.49 14.55 20.17 21.07 16.1935.71 16.21

HF HF 6.67 14.24 12.73 12.91 14.97 9.68 8.50 11.81

†HF HF 2.86 7.12 4.34 4.39 7.63 4.60 4.76 5.30

an incomplete component-labelled frame, which is completed by
one indicator vector:vn ∈ {0, 1}C , with 1 in the position cor-
responding to thesx Gaussian generatingxn and zeros elsewhere
(V = {v1, ...,vN}). The indicator vectors are called missing
data, too. So, the complete data pdf is

p(x,y,v,w, z) ' p(v,w)p(x|v,w)×

p(v,w, z)p(y|v,w, z), (10)

where it is assumed thatx is independent ofy andz. Since the
indicator vectors are Multinomial, the complete data pdf can be
expressed as (11), wherevsx , wsy andzs′y are the components of
v, x andz associated to the Gaussianssx, sy ands′y, respectively.

The EM algorithm is applied iteratively in two steps. The Ex-
pectation (E) step, which estimates the expected values of the miss-
ing data, and the Maximization (M) step, which obtains the param-
eters of the cross-probability GMM using the estimated missing
data.

4.1. The E step

To evaluate the E step, the functionQ(Θ|Θ(k)) is defined
as Q(Θ|Θ(k)) = E[log(p(X,Y,V,W,Z|Θ))|X,Y,Θ(k)],
whereE[•] is the expected value,k is the iteration index andΘ
includes the unknown parameters of the cross-probability GMM.
It is expressed as (12), where

(vsxwsy )
(k) ' E[vsx |xn]E[wsy |yn], (13)

(vsxwsyzs′y )
(k) ' (vsxwsy )

(k)E[zs′y |yn, vsx , wsy ,Θ
(k)],

(14)
where it is assumed thatvsx and wsy are independent,
E[vsx |xn,yn,Θ

(k)] ' E[vsx |xn] andE[wsy |xn,yn,Θ
(k)] '

E[wsy |yn]. E[zs′y |yn, vsx , wsy ,Θ
(k)] is estimated with (8) and

(9) as (15), andE[vsx |xn] andE[wsy |yn] are computed in a sim-
ilar way with (1) and (2), and with (3) and (4), respectively. Al-
though, in this work, to simplify,E[vsx |xn] andE[wsy |yn] values
are 1, if the corresponding Gaussians are the most probable ones,
and 0 in any other case (hard Gaussian estimation approach).

4.2. The M step

To obtain the maximum likelihood estimates for the parameters
of the cross-probability GMM,Q(Θ|Θ(k)) is maximized with re-
spect to them. So, the corresponding expressions for the(k+1)th
iteration are

p(s′y|sx, sy)
(k+1) =

∑
n(vsxwsyzs′y )

(k)

∑
n

∑
s′y
(vsxwsyzs′y )

(k)
. (16)

μ
(k+1)

sx,sy ,s′y
=

∑
n(vsxwsyzs′y )

(k)yn
∑
n(vsxwsyzs′y )

(k)
. (17)

Σ
(k+1)

sx,sy,s′y
= 1∑

n(vsxwsy zs′y
)(k)
×

∑
n(vsxwsyzs′y )

(k)(yn − μ
(k)

sx,sy ,s′y
)(yn − μ

(k)

sx,sy ,s′y
)t.

(18)

Once the cross-probability GMM parameters are estimated for
each basic environment,p(sx|yt, e, sey) can be obtained with (8) as
(19). Note that the time-independent assumption has been avoided.

p(sx|yt, e, s
e
y) =

p(yt|sx, sey)∑
sx
p(yt|sx, sey)

. (19)

Observe that if the hard Gaussian estimation approach is con-
sidered and the noisy feature vectors are modelled in (8) with the
same uniform pdf for all the pairs of Gaussians (sx andsey), instead
of a GMM for each one, the cross-probability model is (6).

5. Results
To observe the performance of the cross-probability GMM pro-
posed in a real, dynamic, and complex environment, a set of exper-
iments were carried out using the Spanish SpeechDat Car database
[6]. Seven basic environments were defined: car stopped, motor
running (E1), town traffic, windows close and climatizer off (silent
conditions) (E2), town traffic and noisy conditions: windows open
and/or climatizer on (E3), low speed, rough road, and silent condi-
tions (E4), low speed, rough road, and noisy conditions (E5), high
speed, good road, and silent conditions (E6), and high speed, good
road, and noisy conditions (E7).

The clean signals are recorded with a CLose talK (CLK) mi-
crophone (Shune SM-10A), and the noisy ones are recorded by a
Hands-Free (HF) microphone placed on the ceiling in front of the
driver (Peiker ME15/V520-1). The SNR range for CLK signals
goes from 20 to 30 dB, and for HF ones goes from 5 to 20 dB.

For speech recognition, the feature vectors are composed of
the 12 MFCCs, first and second derivatives and the delta energy,
giving a final feature vector of 37 coefficients computed every 10
ms using a 25 ms Hamming window. On the other hand, in this
work, the feature vector normalization methods are applied only to
the 12 MFCCs and energy, whereas the derivatives are computed
over the normalized static coefficients

The recognition task is isolated and continuous digits recogni-
tion. Three-state 16 Gaussian continuous density HMM to model
the 25 Spanish phonemes and 2 silence models for long and inter-
word silences are used in this task.

The Word Error Rate (WER) baseline results for each basic
environment are presented in Table 1, where MWER is the Mean
WER computed proportionally to the number of utterances in each
basic environment. Cepstral mean normalization is applied to test-
ing and training data. “Train” column refers to the signals used to
obtain the corresponding acoustic HMMs: CLK if they are trained
with all clean training utterances, and HF and if they are trained
with all noisy ones. HF† indicates that specific acoustic HMMs for
each basic environment are applied in the recognition task (envi-
ronment match condition). “Test” column indicates which signals
are used for recognition: clean, CLK, or noisy, HF.

Table 1 shows the effect of real car conditions, which increases
the WER in all of the basic environments, (Train CLK, Test HF),
concerning the rates for clean conditions, (Train CLK, Test CLK).



p(x,y,v,w, z) '
∏
sx

∏
sy
[p(vsx = 1, wsy = 1)p(x|vsx = 1, wsy = 1)]

vsxwsy×
∏
sx

∏
sy

∏
s′y
[p(vsx = 1, wsy = 1, zs′y = 1)p(y|vsx = 1, wsy = 1, zs′y = 1)]

vsxwsy zs′y .
(11)

Q(Θ|Θ(k)) =
∑
n

∑
sx

∑
sy
(vsxwsy )

(k)[log(p(sx)p(sy)) + log(p(xn|vsx = 1, wsy = 1))]+∑
n

∑
sx

∑
sy

∑
s′y
(vsxwsyzs′y )

(k)[log(p(sx)p(sy)p(s
′
y|sx, sy)) + log(p(yn|vsx = 1, wsy = 1, zs′y = 1))].

(12)

E[zs′y |yn, vsx , wsy ,Θ
(k)] =

p(s′y|sx, sy)
(k)N(yn|μ

(k)

sx,sy,s′y
,Σ
(k)

sx,sy,s′y
)

∑
s′y
p(s′y|sx, sy)(k)N(yn|μ

(k)

sx,sy,s′y
,Σ
(k)

sx,sy ,s′y
)
. (15)
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Figure 2:Mean improvement in WER, MIMP, in% for different normal-
ization techniques.

When acoustic models are retrained using all basic environment
signals, (Train HF) MWER decreases. Finally, 5.30% of MWER
is obtained for environment match condition.

Figure 2 shows the mean improvement in WER (MIMP) in
% for MEMLIN with Time-Independent cross-probability model
(MEMLIN TI) and with Time-Dependent cross-probability GMM
(MEMLIN TD). Also the results with Environmental Model Se-
lection (SPLICE EMS) [4] are included. A 100%MIMP would be
achieved when MWER equals the same of clean conditions. The
cross-probability GMMs are composed by 2 Gaussians. It can be
observed the important improvement of MEMLIN TD concerning
MEMLIN TI: from 42.55% to 63.38% with 4 Gaussians per basic
environment and from 70.58% to 78.47% with 128 Gaussians. Al-
though the number of Gaussians to model the basic environments
could be the same for MEMLIN TI and MEMLIN TD, the com-
puting time is not the same. To reduce it, only the cross-probability
GMMs of the most probable pairs of Gaussians can be computed in
normalization. In this case, for each noisy feature vector, the most
probable Noisy model Gaussians (]NG) can be obtained with (3)
and (4), and for each one, the corresponding most probable Clean
model Gaussians (]CG) are obtained with (6). Table 2 shows the
results for MEMLIN TD for different]NG and]CG. In all cases,
the clean and noisy basic environments are modelled with 128
Gaussians, and the cross-probability GMMs are composed by 2
Gaussians. It can be observed that the results always improve the
ones obtained with MEMLIN TI with 128 Gaussians per basic en-
vironment (70.21%).

6. Conclusions
In this paper we have presented an approach of MEMLIN where
the cross-probability model is estimated by modelling the noisy
feature vectors associated to each pair of Gaussians from the clean
and the noisy spaces with a GMM. MEMLIN obtains an improve-
ment in WER of 70.21% with 128 Gaussians per environment,

Table 2: Mean WER (MWER) and mean improvement in WER
(MIMP) in %when different Gaussians of cross-probability GMM
arecomputed.

]NG ]CG MWER MIMP

MEMLIN TD 128-128 4 4 5.39 74.81

MEMLIN TD 128-128 8 8 5.53 73.85

MEMLIN TD 128-128 16 16 5.41 74.69

MEMLIN TD 128-128 32 32 5.11 76.77

MEMLIN TD 128-128 64 64 4.86 78.47

MEMLIN TD 128-128 128 128 4.86 78.47

whereas MEMLIN with cross-probability GMM reaches 78.47%
for the same number of Gaussians to model each basic environ-
ment. Since the computing cost for the proposed approach is
higher, an alternative is considered: only the most probable pair
of Gaussians of the cross-probability GMM are computed. So,
only with the 16 most probable pair of Gaussians, an improvement
of 74.81% is obtained, when 128 Gaussians per basic environment
are used.
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